
RISC-V IN SPACE WORKSHOP, APRIL 2025 1

ENGAGE-V: A RERI-Compliant RISC-V Module
for RAS in Space Applications

Nicasio Canino, Daniele Rossi, and Sergio Saponara
Department of Information Engineering, University of Pisa, Pisa, Italy

Abstract—The adoption of the RISC-V Instruction Set Ar-
chitecture (ISA) in space applications has gained momentum
due to its open-source and royalty-free nature, offering flexi-
bility and customization. This paper presents the design and
implementation of the ENGAGE-V peripheral, a RERI-compliant
(Reliability availability and serviceability Error record Register
Interface) error logging and reporting module tailored for RISC-
V-based systems in space environments. The ENGAGE-V module
enhances the resilience and fault tolerance of the system by
providing customizable and standardized error logging and
reporting capabilities, supporting standard fault tolerant tech-
niques in addressing the challenges posed by cosmic radiation,
solar particle events, and extreme temperatures. Our approach
leverages the modularity of RISC-V to create a robust solution
that can be integrated into various space-related systems, from
low-power embedded devices to high-end computing platforms.
The exploration of the ENGAGE-V module’s design variables
focuses on key parameters that configure the error logging and
reporting capabilities, for a balanced trade-off between resource
constraints and error management needs. By implementing the
ENGAGE-V module, designers can extend the operational life
and reliability of space missions, reducing the need for redundant
systems and minimizing mission-critical failures.

I. INTRODUCTION / TOPIC DISCUSSION

Over the last few years, the space industry and the research
community have progressively adopted the RISC-V Instruction
Set Architecture (ISA) to design novel and resilient computing
systems targeting space applications. A key motivating factor
is its royalty-free and open-source nature, which provides de-
signers with a flexible and extremely customizable ISA. RISC-
V-based systems can cover low-power to high-end space appli-
cations with address space configurations of 32-bit (RV32) and
64-bit (RV64), which are also structured to support many-core
implementations [1]–[3]. The modularity of RISC-V allows
for customization of processors for space applications, yet
designers must prioritize system resilience and fault-tolerance
by enhancing the computing system’s Reliability, Availability,
and Serviceability (RAS).

Resilient and fault-tolerant computing systems (high RAS)
are crucial in space applications due to the inherently harsh and
unpredictable conditions of the space environment. Spacecraft
and satellites are constantly exposed to extreme conditions,
which leads to a high incidence of soft and hard hardware
errors, thus critically compromising the functionality and
longevity of space missions [4]. In space applications, the
main causes of hardware errors are cosmic radiation and solar

This research was partially supported by EuroHPC Joint Undertaking
projects EPI-SGA2 (European Processor Initiative) and DARE (Digital Au-
tonomy with RISC-V in Europe).

particle events, which can penetrate electronic components and
trigger effects such as Single-Event Upsets (SEUs), Single-
Event Transients (SETs), and Single-Event Latch-ups (SELs).
Additional factors such as electromagnetic interference and
extreme temperatures increase the susceptibility of onboard
systems. Therefore, key components such as processors, mem-
ories, and communication systems are among the most vulner-
able to these errors. Incorporating resilient and fault-tolerant
designs not only mitigates the risks associated with hardware
errors but also extends the operational life of spacecraft.

Redundancy is a key approach to improving the system
fault tolerance of the targeted components, distinguished in
three main categories: Temporal redundancy repeats operations
over time with the same HW unit to save costs but increase
execution time; Spatial redundancy relies on parallel HW units
to perform the same operations, often implementing Triple-
Modular Redundancy (TMR) for quick error detection; and
Information redundancy adds extra information generated by
Error Correcting Codes (ECC) that can detect and even correct
some errors [4]–[6]. To further increase fault tolerance and,
more generally, RAS, these redundancy approaches should
be supported by error logging and reporting features. Some
works in this direction propose solutions that include these
features, but they log and report the detected errors via custom
interfaces, which are specific to the targeted problem. An
alternative solution can come from the implementation of a
standardized and flexible Hardware-Software Interface (HW-
SW Interface) for Error Logging and Reporting. It is an
additional module that monitors HW units that implement
an error-checking solution, exploiting redundancy. When the
monitored HW unit detects an error, this HW-SW interface will
retrieve a set of error-related information that will be logged in
an ad hoc set of registers (Error Record), which is accessible
by SW through memory-mapped access. Then, depending on
error severity, the detected error can be reported to the system
SW via an interrupt signal.

Previously, we developed the ENGAGE peripheral (Error
loggiNG And reportinG architecturE), as a solution to provide
error logging and reporting features in any computing system
[7]. In this work, instead, we present and explore an updated
version that specifically targets RISC-V-based systems, called
ENGAGE-V. It offers standardized logging and reporting
capabilities for HW errors, ensuring compliance with the
ISA-agnostic RERI specification (RAS Error Record Register
Interface), thus providing an additional layer of resilience for
space-oriented systems [8]. Moreover, the ENGAGE-V pe-
ripheral offers significant flexibility and customization during



RISC-V IN SPACE WORKSHOP, APRIL 2025 2

the implementation phase (maintaining the RERI compliance),
enabling designers to accommodate various trade-offs related
to system resource overhead and logging/reporting needs.

II. RERI-COMPLIANT ENGAGE-V MODULE

As anticipated, our proposed ENGAGE-V module provides
error logging and reporting capabilities that comply with the
RERI specification, a RISC-V task group [8]. These capabil-
ities can only be provided to system modules that implement
some sort of error-checking HW. In fact, our ENGAGE-V
module monitors the protected units while waiting for an HW
error to be detected.

A. RERI Specification

First, the RERI taxonomy for the detected errors is provided,
which classifies errors depending on their severity:

• Corrected Error (CE): if the implemented redundancy
technique detects and autonomously corrects the HW
error, so no additional action is required. Different error
correction techniques can be implemented, for example,
ECC codes in memories.

• Uncorrected Error Deferred (UED): if the detected error
is not autonomously correctable but does not disrupt the
ongoing system functionality. The system operation can
progress, and the error management can be deferred to
when the affected data is actually used. This may happen
with uncorrectable errors detected during memory scrub-
bing/refreshing, since the erroneous data is not consumed
by any ”processing” module.

• Uncorrected Error Critical (UEC): if the detected error
is not autonomously correctable and requires immediate
error management. Note that an UED can be escalated to
UEC when its management cannot be further deferred.

Clearly, error taxonomy cannot consider undetected errors
by definition. From a RAS point of view, for instance, the UED
category can maximize the availability and serviceability of the
system in space applications. By logging the information on
the detected UED without disrupting the system operations, it
is able to provide the desired service minimizing the interrup-
tions and the system failures. Even though this consideration
is applicable to non-space classical systems, it is greatly
magnified in the harsh space environment, which is notoriously
characterized by higher error rates. Therefore, keeping trace
of also the UEDs provides a more comprehensive approach.

Secondly, the heart of the HW-SW interface that provides
the error logging feature are the Error Record Banks. In
particular, the key characteristics are the following.

• A system can implement one or more error banks, acces-
sible via memory-mapped means;

• Each error bank can implement up to 63 Error Records
(ER), independently of the others;

• Each monitored HW unit can be connected to multiple
ERs;

• Each ER requires a 64-byte addressing space (set of eight
64-bit registers).

Table I lists the available registers within a bank. The two
main groups are separated by a continuous line: the Bank

TABLE I
ERROR RECORD BANK MEMORY-MAPPED REGISTER LAYOUT.

Address
Offset Register Name Size

(Bytes) Description

0 vendor_n_imp_id 8 Vendor and implementation ID.
8 bank_info 8 Error bank information.
16 valid_summary 8 Summary of valid ERs.
24 Reserved 32 Res. for future standard use.
56 Custom 8 Designated for custom use.

64 + 64 · i control_i 8 Control reg of ERi.
72 + 64 · i status_i 8 Status reg of ERi.
80 + 64 · i addr_i 8 Address reg of ERi.
88 + 64 · i info_i 8 Information reg of ERi.
96 + 64 · i suppl_info_i 8 Supplemental info reg of ERi.
104+64 ·i timestamp_i 8 Timestamp reg of ERi.
112+64 ·i Reserved 16 Res. for future standard use.

Header, which stores information on the state of that bank,
and the array of N ER, each containing information on a
detected HW error. An ER can store a variety of information
on the detected error, such as error severity (CE, UED, or
UEC), error code, CE counter, address (if any), timestamp, or
other implementation-specific information. Also, the logging
capabilities can be tuned for the ERs in a bank because the
RERI specification only mandates some register fields. This
flexibility allows designers to add these error logging and
reporting features to their RISC-V-based systems, covering
from tightly constrained to high-end computing systems for
space applications.

B. ENGAGE-V Architecture

As illustrated in Figure 1, the architecture of the developed
ENGAGE-V module comprises the following main building
blocks: Error Mux, Error Synchronization Interface, Logging
Controller, Error Record Bank, and Interrupt Request (IRQ)
Generator. Our ENGAGE-V module can monitor M HW units
that have to be protected by error-checking HW (e.g., ECC
protected memories, or even modules with DMR or TMR). We
designed the peripheral in SystemVerilog to be fully compliant
with the RERI specification, targeting RISC-V systems [7].

Fig. 1. Internal architecture of the developed ENGAGE-V module.

In summary, the architecture can be divided into two stages.
The first one, Pre-Process stage, includes the Error Mux
and the Error Synchronization Interface. It gathers and pre-
processes the output of the M error-checking HW, which
contains the information on the detected error. Note that
the blocks Info Tuning contain minimum implementation-
dependent combinational logic, which is fundamental to cor-
rectly interface each HW unit with the Error Mux.



RISC-V IN SPACE WORKSHOP, APRIL 2025 3

This information is then interfaced via a circular FIFO
(First-In First-Out) buffer to the second stage, Error Log & Re-
port stage, which consists of the Logging Controller, the Error
Record Bank, and the IRQ Generator. This stage collects and
stores the pre-processed error information in one of the N ERs
of the Bank. In particular, the Logging Controller determines
in which ER to store the new information. If all ERs already
contain valid information, it determines whether to discard
the new one or to overwrite a valid record, depending on the
severity and priority of the new error against the stored ones.
In addition, the IRQ Generator triggers an interrupt signal
according to the error log stored in the ERi and the run-time
configuration of its control register, control_i.

From a system perspective, multiple instances of our
ENGAGE-V module can be implemented in the system, and
each RAS hub can monitor a customized number of HW
units (in line with the RERI specification). Some examples
are shown in Figure 2, illustrating different combinations of
M (number of HW units) and N (number of ER). It should
be noted that each RAS hub will handle a single error bank
and all its ER will have the same error logging capabilities.

Fig. 2. Example of configurability of the ENGAGE-V modules monitoring
different HW units and handling different ER.

By modifying the configuration parameters in the Sys-
temVerilog wrapper module of the specific RAS hub, different
trade-offs between hardware requirements and logging and
reporting capabilities can be achieved. This configurability
allows designers to provide well-balanced error logging and re-
porting features in any space-related system, as error-checking
HW (e.g., information redundancy) is always implemented to
ensure fault-tolerance and resilience.

III. DESIGN SPACE OF ENGAGE-V MODULE

The configuration of the single ENGAGE-V module is
determined by three main variables within the design space, in
addition to the number of instances to be integrated into the
system (NRAS-hub). The following three design parameters
can be independently adjusted for each RAS hub:

• The depth of the FIFO buffer in the pre-processing stage
(NFIFO), fundamental for aligning the error data with
the pertinent address, if applicable.

• The number of ER contained in the error bank of that
RAS hub (NER).

• The register fields implemented in each ER within that
RAS hub, concerning the provided error logging and
reporting features (e.g., severity of error logged, CE
counter, timestamp, etc.).

These variables depend on the number of HW units to be
monitored (NHW -unit) and the resource constraints of the sys-
tem. Indeed, standard computing systems can be categorized as

embedded, application, and HPC/cloud. In space applications,
they are typically further categorized by their ability to address
unique challenges such as radiation, extreme temperatures,
and limited power. Therefore, we can consider that the more
resilient and fault-tolerant the architecture of the system, the
higher NHW -unit in total. In addition, depending on the target
space application, the error rate may vary significantly. Once
NRAS-hub has been determined, the remaining design variables
can be selected for the different RAS hubs. In the following
analyses, NHW -unit will refer to a single RAS hub.

A. Design Exploration of the RAS Hub

1) FIFO Buffer configuration: Firstly, the depth of the
FIFO buffer can be determined depending on NHW -unit
specifically monitored by that RAS hub. Since the Logging
Controller cannot immediately retrieve the error information
stored in the buffer, a reasonable curve for NFIFO should also
consider the conditional probability of distinct errors detected
in consecutive clock cycles (PCon-Err). In this situation, the
buffer will have a temporary peak in the write rate (one per
clock cycle), whereas the read rate will be limited to one
every two clock cycles. This conditional probability rapidly
decreases for each additional consecutive error that should
be detected in one of the monitored HW units. However,
it increases slightly for greater NHW -unit. The following
function traces some guidelines for the the estimation of a
sufficient depth of the buffer:

NFIFO = δ + ⌊α · log2(NHW -unit)⌋ (1)
where α should be tuned according to the application envi-
ronment and the respective HW error probability; δ ≥ 2 sets
a minimum value for the FIFO buffer depth.

2) Error Records configuration: Secondly, the number of
Error Records (NER) to implement within a single RAS hub
should be determined. In this case, NER varies according to
three main factors:

1) Number of HW units to monitor (NHW -unit), since the
higher this number, the higher the probability that a new
HW error is detected and should be recorded.

2) Reducing NER, the likelihood that each ER in the
bank already holds valid data increases, requiring either
overwriting existing records or discarding new entries.
To minimize information loss due to hardware errors, it
is essential to limit the overwrite/discard rates.

3) The frequency at which the system SW can access
the logged ERs, which can then log information of
new errors, thus minimizing the overwriting/discarding
events.

The function considered, NER = f(NHW -unit, δ, α), has the
same expression as Equation 1, where α has an equivalent
functional meaning, while δ now defines a minimum number
of ERs that are deemed acceptable according to the application
considered (δ ≥ 1).

3) Error Logging & Reporting configuration: Lastly, once
the HW units to be monitored have been defined, the error
logging and reporting capabilities of that RAS hub should
be defined. This step is crucial to optimizing the resource
requirements of the entire module. Not all bank registers



RISC-V IN SPACE WORKSHOP, APRIL 2025 4

(listed in Table I) must be physically implemented with 64-bit
registers to comply with the RERI specification. Specifically,
each ER requires an equivalent number of 1-bit registers
REG1-bit ∈ [18; 325]. Therefore, designers may physically
implement only the required register fields, thus optimizing
the total number of registers REGTOT ; for example, if the
CE counter is not required, the relative 16-bit field of the
register status_i will not be physically implemented.

B. Impact of Design Parameters on System Resources

The design parameters discussed in the previous subsec-
tion affect primarily one of the two internal stages of the
ENGAGE-V module. For the sake of clarity, we evaluated
the impact of NHW -unit and NER on the resources required
to implement a single RAS hub. Different syntheses have been
performed with the NanGate Open-Cell library, designed with
45nm FreePDK. For all syntheses, the ERs have been config-
ured to implement complete logging and reporting features.

Firstly, Figure 3 shows how the resource requirements vary
as a function of NHW -unit for the entire RAS hub and the
internal Pre-Process stage. Note that this parameter mainly
affects this internal stage, since total[i]− pre-process[i] ≃ 6
kGE for any considered value of monitored HW units.

Fig. 3. Synthesis of a RAS hub with NHW−unit ∈ [1; 20] and NER = 1.

Similarly, Figure 4 illustrates how area occupation varies
with NER, highlighting the area required for the Log & Report
stage. It should be noted that this parameter affects not only
this stage, but also the AXI4 logic required for the memory-
mapped accesses. Indeed, the difference in the area between
the two cases in Figure 4 increases with NER.

Fig. 4. Synthesis of a RAS hub with NHW−unit = 2 and NER ∈ [1; 20].

These synthesis results highlight that some parameters in-
fluence overall resource consumption more than others, for
example, the case NER = 4 in Figure 4 requires a total of
23.2 kGE, whereas, even with NHW -unit = 20 in Figure 3
the total area is only 18.91 kGE.

By adjusting these parameters, designers can tailor the
ENGAGE-V module to meet the unique requirements of
various space applications, balancing resource constraints with
the need for robust error logging and reporting capabilities.

IV. CONCLUSION

In this work, we have outlined the architecture of our
ENGAGE-V peripheral. It is a RERI-compliant error logging
and reporting module tailored for RISC-V-based systems,
which could increase system resilience in space applications.
The ENGAGE-V module enhances the resilience and fault
tolerance of computing systems by providing customizable
and standardized error logging and reporting capabilities. Our
approach addresses the unique challenges posed by the harsh
space environment, such as cosmic radiation and extreme
temperatures, which significantly increase the incidence of
HW errors.

The modular and flexible nature of the ENGAGE-V module
allows its integration into various space-related systems, from
low-power embedded devices to high-end computing plat-
forms. By implementing the ENGAGE-V module, designers
can achieve a balanced trade-off between system resource
overhead and the need for robust error management, ultimately
extending the operational life and reliability of space missions.

Future research and development will focus on further
optimizing the performance of the ENGAGE-V module and
exploring additional fault-tolerance techniques to enhance the
reliability of RISC-V systems in space. This includes investi-
gating new redundancy approaches, improving error detection
and correction mechanisms, and expanding the module’s ca-
pabilities to support emerging space applications.

REFERENCES

[1] L. Cassano et al., “Is RISC-V Ready for Space? A
Security Perspective,” in 2022 IEEE International Sym-
posium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), IEEE, 2022, pp. 1–6.

[2] N.-J. Wessman et al., “De-RISC: the First RISC-V
Space-Grade Platform for Safety-Critical Systems,” in
2021 IEEE space computing conference (SCC), IEEE,
2021, pp. 17–26.

[3] D. A. Santos et al., “A Low-Cost Fault-Tolerant RISC-
V Processor for Space Systems,” in 2020 15th Design
& Technology of Integrated Systems in Nanoscale Era
(DTIS), IEEE, 2020, pp. 1–5.

[4] N. Koca et al., “Exploring Error Correction Circuits on
RISC-V based Systems for Space Applications,” in 2024
IEEE International Symposium on Circuits and Systems
(ISCAS), IEEE, 2024, pp. 1–5.

[5] M. Barbirotta et al., “Dynamic triple modular redundancy
in interleaved hardware threads: An alternative solution
to lockstep multi-cores for fault-tolerant systems,” IEEE
Access, 2024.

[6] A. M. P. Mattos et al., “Using HARV-SoC for Reliable
Sensing Applications in Radiation Harsh Environments,”
in 2023 9th International Workshop on Advances in Sen-
sors and Interfaces (IWASI), IEEE, 2023, pp. 227–232.

[7] N. Canino et al., “HW-SW Interface Design and Im-
plementation for Error Logging and Reporting for RAS
Improvement,” IEEE Access, pp. 60 081–60 094, 2024.

[8] RERI (RAS Error-record Register Interface) task group.
[Online]. Available: https://lists.riscv.org/g/tech-ras-eri.

https://lists.riscv.org/g/tech-ras-eri

	Introduction / Topic Discussion
	RERI-compliant ENGAGE-V Module
	RERI Specification
	ENGAGE-V Architecture

	Design Space of ENGAGE-V Module
	Design Exploration of the RAS Hub
	FIFO Buffer configuration
	Error Records configuration
	Error Logging & Reporting configuration

	Impact of Design Parameters on System Resources

	Conclusion

