
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Enhancing Cache Coherent Interconnects to support Space Systems

AHSEN EJAZ, Chalmers University of Technology, Sweden
BHAVISHYA GOEL, Chalmers University of Technology, Sweden
MADHAVAN MANIVANNAN, Chalmers University of Technology, Sweden
MEHRZAD NEJAT, Chalmers University of Technology, Sweden
IOANNIS SOURDIS, Chalmers University of Technology, Sweden
PER STENSTRÖM, Chalmers University of Technology, Sweden

Abstract: As multi-core designs become prevalent in space systems, the role played by cache coherent interconnects is becoming
increasingly crucial for scaling to larger systems. This paper outlines techniques to enhance a cache coherent interconnection network
based on AMBA CHI specification, developed originally for high-performance chips, to support the needs of a space System-on-Chip.
The objective is to add reliability and performance isolation capabilities through the proposed techniques.

1 Introduction
The growth of RISC-V highlights the demand for an open standard for Instruction Set Architectures (ISA) that provides
customization, flexibility, and reduces reliance on proprietary ISAs. Its adoption has expanded from its initial focus
on microcontrollers in embedded systems to now encompass high-performance microprocessors used in servers and
accelerator-based systems [20, 21, 24, 25]. As the industry transitions to high performance RISC-V based microproces-
sors, design offerings with a large number of processor cores are becoming more prevalent. These designs typically
implement a shared memory model with hardware-managed cache coherence, a feature that simplifies the task for
software since it doesn’t have to explicitly manage on-chip communication. The complexity introduced by the addition
of more cores coupled with the increasing number of other IP blocks in designs, places an increasing emphasis on the
scalable cache coherent interconnect for multi-core processors.

The evolution of standardized interconnect protocols has closely followed the development of microprocessor archi-
tecture, transitioning from simple bus-based systems gradually to complex Networks-on-Chip (NoCs). Traditionally, in
single-core systems and simple multi-core systems with a few cores, bus-based interconnects featuring separate buses for
different purposes, such as the Processor Bus and the Peripheral Bus, were mostly sufficient to meet the communication
requirements. As microprocessor designs with an increasing number of cores and IP blocks become more prevalent,
standardized interconnect protocols such as AMBA5 Coherent Hub Interconnect (CHI) [22] and SiFive’s TileLink [23]
have emerged, utilizing complex interconnection networks and communication protocols to support parallel high-speed
data transfers and enable efficient inter-core communication. This shift has accelerated the utilization of NoC-based
cache coherent interconnect due to its ability to offer better scalability. Furthermore, these standards enable fabless
design houses to create reusable components that can be integrated across various designs or to even be licensed for
external use, thereby fostering adoption, accelerating innovation, and reducing design effort.

Historically, there has been a performance gap between space-based and terrestrial systems, primarily due to con-
servative design and manufacturing choices driven by harsh conditions of space, stringent reliability requirements,
and rigorous testing standards. However, the growing demand for high-speed on-board processing in space, coupled
with an increase in private sector involvement, is expected to increase performance requirements and reduce this gap.
The demand for increased computational performance in space systems, like in terrestrial systems, is being met by
integrating multiple cores into a single system-on-chip (SoC). The adoption of open standards like RISC-V coupled
with increasing system integration helps reduce system costs by consolidating functions, which previously required
multiple chips, onto a single SoC. In addition to adopting multi-core designs, with the number of cores expected to
rise, such SoCs are also utilizing advanced processing units, like AI accelerators and FPGAs, for enhanced processing
efficiency. In a nutshell, the complexity of space SoC design is starting to mirror that of terrestrial systems [12] and
this consequently underscores the importance of scalable cache coherent interconnect in space SoC designs. While the
performance requirements from a cache coherent interconnect used in space SoCs may be relaxed in comparison to
terrestrial systems, there is stricter requirements in terms of reliability and performance isolation.

RISC-V in Space Workshop 1



53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2

Core+L1I/D

RN-F

HN-F

R

R

R
NI

NI

R

Mem Ctrl.

SN

NI

Tile

R CHI NoC Router

CHI Link

NI Network Intf.

Core + L1 I/D (RN-F)

Coherence Directory (HN-F)

Memory Controller (SN)

Fig. 1. System Architecture Overview showing key components based on AMBA CHI specification

The team at Chalmers has been working on the design and implementation of a cache coherent interconnect based
on the AMBA CHI standard in the context of multiple research projects like EPI [13], EUPilot [17], and eProcessor
[16], under the EuroHPC umbrella. The preliminary version of this design has been taped-out and bring-up efforts are
currently in progress. While the current design targets high performance use cases, we are exploring techniques to
make it amenable for operation in environments that pose reliability and performance isolation requirements. In this
paper, we outline the architectural and design techniques we are considering to achieve this objective.

The rest of the paper is organized as follows: Section 2 first provides an overview of the system architecture wherein
the key components of the cache coherent interconnect are introduced. Section 3 outlines their functions and describes
the techniques that we are evaluating for use in the different components before we conclude in Section 4.

2 System Architecture Overview
An overview of the multi-core system architecture is shown in Figure 1. For the sake of clarity we focus only on the
key components that are part of the AMBA CHI specification. The design comprises multiple tiles connected together
typically using a mesh interconnection network. Each tile comprises a core with single/multiple levels of private caches,
referred to as a fully-coherent requester node (RN-F) that acts as a source of requests in the CHI network, as well as a
slice of the coherence directory, referred to as a fully-coherent HomeNode (HN-F) that acts as a point of coherence in
the CHI network. Both the RN-F and the HN-F, that are part of a tile, have interfaces to connect to the NoC router. Tiles
may optionally comprise a main memory controller that serves read and write requests directed to main memory, also
referred to as a Subordinate Node (SN) in CHI terminology. The CHI NoC uses separate channels for request, response,
data and snoop traffic classes. RN-F, HN-F and SN comprise 𝑇𝑥/𝑅𝑥 interfaces to connect to the necessary channels
in the NoC. The interface and the communication protocol between the different nodes are based on the AMBA CHI
specification. We collectively refer to HN-F and the CHI NoC as the cache coherent interconnect.

3 Design Overview
In this section, we first provide an overview of the functionality of key components in the cache coherent interconnect.
We then describe strategies that we are evaluating to enhance the reliability for each of these components. Note that the
focus of this discussion is primarily on mitigating the impact of transient faults because they represent the most likely
type of fault in space electronics triggered because of interaction with high-energy particles in space environment.

3.1 Network-on-Chip
Design Overview: An on-chip interconnection network is composed of three main components [6]: i) network
interfaces (NI), which act as bridges between the connected IP and the network and translate messages to network
packets and vice versa, ii) network routers to route and control the flow of packets in the network and iii) link wires to
RISC-V in Space Workshop



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Enhancing Cache Coherent Interconnects to support Space Systems 3

transfer packets from one router to the next. Routers and links are connected to create a network topology, typically
a 2D mesh topology (as shown in Figure 1) because its regular structure simplifies layout, placement and routing
during physical implementation. Efficient design of NoC routers is vital to ensure scalable and high-performance
communication in multicore chips.

The router datapath, which carries packets across a router, is composed of two stages: i) Switch Traversal (ST) and ii)
Link Traversal (LT), separated by input Virtual Channel (VC) buffers and an output register. The router control logic,
which manages the flow of packets over the datapath, consists of Next-Route Computation (NRC), Virtual Channel
Selection (VS) and Switch Allocation (SA) blocks. Most modern NoC routers allow flits to hop from one router to the
next in 3 clock cycles, one cycle for NRC, VS and SA working in parallel and one clock cycle for each ST and LT stages
[2, 7].

Enhancements for the Space domain: NoC performance is crucial to the overall performance of applications
running on multicore systems. Performance of an application may be sensitive to the network latency (e.g., real-time
applications) [19] or to the maximum network throughput (e.g., concurrent scale-out applications) [14, 19]. NoC latency
can be reduced with low overhead, from 3 to 2 clock cycles per hop, by bypassing control stages (VS and SA) in a router,
when there is no contention and downstream buffer resources are available [2, 9]. Further reduction to a single clock
cycle per hop is possible by bypassing the ST stage as well [10]. NoC throughput is improved by using higher-radix
topologies [11, 19], balancing the logic delay of all pipeline stages and ensuring that the datapath, rather than the
control logic, defines the timing critical path of the NoC router. This allows the full clock period to be utilized to move
the flit forward over the datapath, maximizing performance [8].

Providing latency and throughput guarantees for certain traffic flows in the NoC is also important for many real-time
space applications. This can be achieved by configuring the NoC to permanently allocate specific VCs and ST timeslots
to traffic flows requiring performance guarantees, while allowing the remaining network resources to handle other
traffic in a best-effort manner [18]. These mechanisms can also be used to isolate specific traffic flows and mitigate
timing side-channel attacks by limiting their access to shared network resources [5].

In multicore systems, NoCs typically occupy around 10% of chip area, with the datapath accounting for more than
80% of this, depending on the number and size of VCs [3, 4, 7]. Given that radiation in space can induce transient
faults, ensuring fault tolerance in the datapath is crucial. This can be achieved by adding ECC bits to flits and packets,
allowing error detection and correction. For packets with uncorrectable errors, packet retransmission can be enabled to
ensure reliability. Although packet retransmission can have a significant performance overhead, it can be minimized by
enabling it only for traffic classes that are sensitive to errors.

3.2 Coherence Directory
Design Overview: The coherence directory is responsible for tracking the location and state of data across the various
caches. The operation of the coherence directory is akin to a state machine, in that it utilizes the presence state bits
(used to track which private caches have a copy of the data), the coherence state bits (indicating the state of the line
depending on the underlying protocol used) and the current request state bits to determine the next state for the cache
line and the request/response/snoop/data packets that need to be generated. Our implementation features a multi-stage
pipelined design that is capable of handling one request and response in each cycle and supports handling coherence
state for multiple outstanding in-flight requests concurrently. In addition, the design supports coherence optimizations
that can reduce coherence traffic and request processing latency [15].

Enhancements for the Space domain: We envision a combination of different techniques in order to ensure
reliable operation of the coherence directory. The first is to use redundancy in cases where the overheads involved is
considerably small. For instance the combinatorial logic in the directory state machine could be replicated with little
overhead. Likewise, the coherence state bits typically require two to three bits per cache line and can be replicated
with relatively low overhead. An alternative option is to group state information across different cache lines within a
set together and then using error correction codes (ECC). As for the presence bits adopting ECC is the most favorable
approach since using redundancy for this can lead to prohibitive overheads. Another option is to consider the use of
radiation hardened flip flops and memory for structures which retain state.

The discussion until now assumes that the network is completely reliable and that errors can occur only when
incoming packets are processed at the directory controller. However, in reality, the NoC, using the mechanisms
described in the previous section, cannot guarantee error freedom for packet communication over the network layer.

RISC-V in Space Workshop



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4

This consequently requires error detection and error handling mechanisms at the protocol level as well. Typical
strategies to achieve this include using timeout intervals, retransmitting packets and incorporating extra states in the
state machine to handle redundant messages [1].

4 Conclusion
The transition to RISC-V-based multi-core processors for space necessitates scalable cache coherent interconnect design
that can meet reliability and performance isolation requirements. Our work on adapting the AMBA CHI-based cache
coherent interconnect developed for high performance use case to space domain represents a step in this direction.
By implementing the architectural and design techniques outlined in this paper, we aim to create a cache coherent
interconnect solution that satisfies the needs of the space industry.

Acknowledgments
This work has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant
agreement No. 956702 (eProcessor), under Framework Partnership Agreement No. 800928 and Specific Grant Agreement
No. 101036168 (EPI SGA2), and under grant agreement No. 101034126 (The European PILOT). The JU receives support
from the European Union’s Horizon 2020 research and innovation programme and Spain, Sweden, Greece, Italy, France,
Germany. Additionally, this work has also received funding from the Swedish Foundation for Strategic Research (SSF),
the Swedish Research Council (VR), Vinnova and the Swedish National Space Agengy (SNSA).

References
[1] Konstantinos Aisopos and Li-Shiuan Peh. 2011. A systematic methodology to develop resilient cache coherence protocols. In 44rd Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO 2011, Porto Alegre, Brazil, December 3-7, 2011, Carlo Galuzzi, Luigi Carro, Andreas Moshovos,
and Milos Prvulovic (Eds.). ACM, 47–58. doi:10.1145/2155620.2155627

[2] Chrysostomos Nicopoulos Anastasios Psarras, Ioannis Seitanidis and Giorgos Dimitrakopoulos. 2016. ShortPath: A Network-on-Chip Router with
Fine-Grained Pipeline Bypassing. IEEE Trans. on Computers 65, 10 (2016), 3136–3147.

[3] Brent Bohnenstiehl, Aaron Stillmaker, Jon Pimentel, Timothy Andreas, Bin Liu, Anh Tran, Emmanuel Adeagbo, and Bevan Baas. 2017. KiloCore: A
Fine-Grained 1,000-Processor Array for Task-Parallel Applications. IEEE Micro 37, 2 (2017), 63–69. doi:10.1109/MM.2017.34

[4] B. Bohnenstiehl, A. Stillmaker, J. J. Pimentel, T. Andreas, B. Liu, A. T. Tran, E. Adeagbo, and B. M. Baas. 2017. KiloCore: A 32-nm 1000-Processor
Computational Array. IEEE Journal of Solid-State Circuits 52, 4 (April 2017), 891–902. doi:10.1109/JSSC.2016.2638459

[5] Subodha Charles and Prabhat Mishra. 2021. A Survey of Network-on-Chip Security Attacks and Countermeasures. ACM Comput. Surv. 54, 5, Article
101 (May 2021), 36 pages. doi:10.1145/3450964

[6] W.J. Dally and B. Towles. 2004. Principles and Practices of Interconnection Networks. Morgan Kaufmann Publishers.
[7] Bhavya K. Daya, Chia-Hsin Owen Chen, Suvinay Subramanian, Woo-Cheol Kwon, Sunghyun Park, Tushar Krishna, Jim Holt, Anantha P. Chan-

drakasan, and Li-Shiuan Peh. 2014. SCORPIO: A 36-core Research Chip Demonstrating Snoopy Coherence on a Scalable Mesh NoC with In-network
Ordering. In Int. Symp. on Computer Architecuture (ISCA ’14). 25–36.

[8] A. Ejaz, V. Papaefstathiou, and I. Sourdis. 2018. DDRNoC: Dual Data-Rate Network-on-Chip. ACM Trans. Archit. Code Optim. 15, 2 (2018).
[9] Ahsen Ejaz, Vassilis Papaefstathiou, and Ioannis Sourdis. 2021. HighwayNoC: Approaching Ideal NoC Performance With Dual Data Rate Routers.

IEEE/ACM Transactions on Networking 29, 1 (2021). doi:10.1109/TNET.2020.3034581
[10] Ahsen Ejaz and Ioannis Sourdis. 2022. FastTrackNoC: A NoC with FastTrack Router Datapaths. In IEEE International Symposium on High-Performance

Computer Architecture, HPCA 2022, Seoul, South Korea, April 2-6, 2022. IEEE, 971–985. doi:10.1109/HPCA53966.2022.00075
[11] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu. 2009. Express Cube Topologies for on-Chip Interconnects. In HPCA. 163–174.
[12] High Performance Spaceflight Computer (HPSC). 2024. NASA. https://www.nasa.gov/wp-content/uploads/2024/07/hpsc-white-paper-tmg-

26jun2024-final.pdf
[13] European Processor Initiative. 2019. EPI. https://www.european-processor-initiative.eu/
[14] P. Lotfi-Kamran, B. Grot, and B. Falsafi. 2012. NOC-Out: Microarchitecting a Scale-Out Processor. In 2012 45th Annual IEEE/ACM Int. Symp. on

Microarchitecture. 177–187.
[15] Madhavan Manivannan and Per Stenström. 2014. Runtime-Guided Cache Coherence Optimizations in Multi-core Architectures. In 2014 IEEE 28th

International Parallel and Distributed Processing Symposium, Phoenix, AZ, USA, May 19-23, 2014. IEEE Computer Society, 625–636. doi:10.1109/IPDPS.
2014.71

[16] The European Pilot. 2020. Eprocessor. https://eprocessor.eu/e-processor-in-a-nutshell/
[17] The European Pilot. 2022. EUPilot. https://eupilot.eu/
[18] A. Psarras, I. Seitanidis, C. Nicopoulos, and G. Dimitrakopoulos. 2015. PhaseNoC: TDM scheduling at the virtual-channel level for efficient network

traffic isolation. In 2015 Design, Automation Test in Europe Conference Exhibition (DATE). 1090–1095. doi:10.7873/DATE.2015.0418
[19] Antonis Psathakis, Vassilis Papaefstathiou, Nikolaos Chrysos, Fabien Chaix, Evangelos Vasilakis, Dionisios Pnevmatikatos, and Manolis Katevenis.

2015. A Systematic Evaluation of Emerging Mesh-like CMP NoCs. In ANCS. 159–170.
[20] Akeana 5000 Series. 2024. Akeana. https://www.akeana.com/product/akeana-5000-series/
[21] Sophon SG2042. 2024. Sophgo. https://en.sophgo.com/sophon-u/product/introduce/sg2042.html
[22] AMBA5 CHI Specification. 2024. ARM. https://www.arm.com/architecture/system-architectures/amba/amba-5
[23] TileLink Specification. 2024. SiFive. https://www.sifive.com/document-file/tilelink-spec-1.9.3
[24] TT-Ascalon. 2024. Tenstorrent. https://tenstorrent.com/ip/tt-ascalon
[25] Veyron V1 and V2. 2024. Ventana Microsystem. https://www.ventanamicro.com/technology/risc-v-cpu-ip/

RISC-V in Space Workshop

https://doi.org/10.1145/2155620.2155627
https://doi.org/10.1109/MM.2017.34
https://doi.org/10.1109/JSSC.2016.2638459
https://doi.org/10.1145/3450964
https://doi.org/10.1109/TNET.2020.3034581
https://doi.org/10.1109/HPCA53966.2022.00075
https://www.nasa.gov/wp-content/uploads/2024/07/hpsc-white-paper-tmg-26jun2024-final.pdf
https://www.nasa.gov/wp-content/uploads/2024/07/hpsc-white-paper-tmg-26jun2024-final.pdf
https://www.european-processor-initiative.eu/
https://doi.org/10.1109/IPDPS.2014.71
https://doi.org/10.1109/IPDPS.2014.71
https://eprocessor.eu/e-processor-in-a-nutshell/
https://eupilot.eu/
https://doi.org/10.7873/DATE.2015.0418
https://www.akeana.com/product/akeana-5000-series/
https://en.sophgo.com/sophon-u/product/introduce/sg2042.html
https://www.arm.com/architecture/system-architectures/amba/amba-5
https://www.sifive.com/document-file/tilelink-spec-1.9.3
https://tenstorrent.com/ip/tt-ascalon
https://www.ventanamicro.com/technology/risc-v-cpu-ip/

	Abstract
	1 Introduction
	2 System Architecture Overview
	3 Design Overview
	3.1 Network-on-Chip
	3.2 Coherence Directory

	4 Conclusion
	Acknowledgments
	References

