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Modern satellite systems can rely on an increasing computational power with a con-
tinuously decreasing cost for that hardware. The RISC-V instruction set architecture
adds to the number of possibilities with a flexible combination of standardized and cus-
tom instructions. However, with this increase in possibilities and the following shift
into in-orbit processing comes the rise of software and hardware complexity. To reduce
product development time and cost, satellite manufacturers usually employ single-chip
combinations of an existing hard-IP processor with FPGA fabric. This enables focusing
on the specific task of the system by using an existing toolchain and infrastructure, and
only adding task-specific IP-cores separately.

While this approach is favorable, many companies still employ the hardware-then-
software design process, which misses out on quality and development speed in compar-
ison with more modern approaches. Opposed to this, employing Virtual Prototypes cre-
ates the possibility to design, evaluate, and verify an executable prototype of the system
in an early design stage. This is done by modeling the future hardware on a behavioral or
structural level, with a level of detail that grows together with the project.This enables
both the iterative design evaluation and the parallel development of the software and
(actual) hardware early in the product conception phase, where design-changing deci-
sions still are possible. When comparing to VHDL simulators, Virtual Prototypes have
the key advantages of 1. being available before every IP is finished, and 2. being faster
in execution time (with a flexible trade-off between timing precision and speed [1]). Ad-
ditionally, after development of the lower level hardware stages (e.g. on register transfer
level, gate level, or physical hardware), Virtual Prototypes can be used as golden ref-
erence models together with test and verification methods for comparison between the
system level behavior and the actual hardware (see fig. 1).

The main goal of this abstract is to encourage companies and individuals alike to use
Virtual Prototypes (VPs) and invest in the comparatively low effort to create a correctly
configured VP to benefit from new possibilities. Most notably, improvements in software
quality [3–5], hardware quality [6–8], development speedup / design space exploration [1,
4, 7, 9–12], and accessibility [13–15] are featured in this work.

The traditional development process, especially for highly critical space applications,
is comparatively rigid and document-driven. While it is important to have a clear
architecture and well-defined work packages, achieving the best design decisions can be
hard for complex systems. Unlike simple or complicated systems, where the general
idea is known and tested, complex systems are hard to predict and thus pose a danger
to the success of a product. This is the area where VPs fill the gap: Design space
exploration during the project planning phase enables an early estimate on cost, speed,
power consumption and overall architecture [2]. Such architecture (c.f. fig. 2) decisions
can be simple questions on whether to implement a certain functionality in software
or hardware [12], or more substantially, whether an idea is even possible to implement
given the requirements.

Besides this, the VP that was used for architecture evaluation can be used simulta-
neously to already start development of low-level software to gain feasibility knowledge
and, of course, improve development speed.

Once a VP is used in a project, it can also be leveraged to improve software and
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Figure 1: Virtual prototype design process after [2]

hardware quality which is especially important for space applications. It is usually
not easy to test and explore software on embedded systems because of the memory
and computation constraints, as well as interactions with on- or off-chip peripherals.
Recent research on that topic however shows a multitude of possibilities with a VP. This
includes symbolic execution [3] or coverage-guided fuzzing [16] of software with practical
results, such as finding bugs in network drivers in the RIOT OS [5]. Also, possibilities
of adding dynamic information flow tracking for verifying highly secure systems [4], or
graphical introspection tools for modeled peripherals that help the design understanding
and finding errors [9] arise.

Similar work has been done on the hardware-side as well. The developed peripherals
in the VP can be tested thoroughly with different techniques such as constrained random
verification [8], symbolic execution of the peripherals themselves [6], or by interacting
with the physical world through Hardware-in-the-Loop testing [7] or co-simulation [17].
A high-quality VP then can be used as a golden reference model that can act as an exe-
cutable specification. With that, more and advanced verification is also possible alongside
the traditional testing. For example, modeling frameworks like SystemC TLM [18] offer
possibilities to lift VHDL code to the VP which then can be used to analyze the de-
vices with known tools for equivalence testing, or even synthesize high-level SystemC
code down to VHDL [19]. Finally, the VPs improve the overall accessibility for small
companies or even private individuals to start building their unique selling idea without
having to re-invent everything around it. They can be used as a learning platform [20,
21] where the real hardware would be prohibitively expensive, or as a playground for
potential customers to learn about a product before buying it.
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Figure 2: Embedded system as modeled with a VP [2]

In conclusion, Virtual Prototypes are very useful for designing complex systems and
offer a multitude of different process improvements, resulting in a faster development
speed and better quality. Especially when handling custom RISC-V instructions for
highly specialized applications like SoCs with FPGA-fabric in restricted environments,
the presented contributions show that the benefits of using a VP can significantly out-
weigh the initial work of developing the model. There are many different RISC-V cen-
tered tools and frameworks available [15, 20, 22–24], a lot published as open-source.
Let’s use them!
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